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We describe experiments on convection in binary fluid mixtures in a large-aspect- 
ratio annular container. In  this geometry, the convective rolls align radially and 
travel azimuthally, providing a model of travelling waves in an extended one- 
dimensional nonlinear dynamical system. Several different stable non-equilibrium 
states can be produced in this experiment, and the competition between them leads 
to a wide variety of steady and time-dependent behaviour. The observed 
spatiotemporal behaviour may shed light on recent theories of the nature of stable 
nonlinear travelling-wave convection, the pinning of travelling waves, and the 
creation of spatiotemporal defects. 

1. Introduction 
Much recent theoretical work on the subject of chaos and turbulence in fluids has 

been devoted to the study of models which produce temporally evolving patterns in 
a single spatial dimension. For example, mechanisms which produce spatiotemporal 
complexity have been identified in the Kuramoto-Sivashinsky equation and 
modifications of it (Kuramoto 1978; Sivashinsky 1977, 1979; Shraiman 1986; Chat6 
& Manneville 1987), as well as in equations of the Ginzburg-Landau type (Nozaki & 
Bekki 1983; Coullet, Elphick & Repaux 1987). An important goal of our research is 
to find an experimental system in which the concepts of one-dimensional pattern 
evolution can be tested. As a first step towards this goal, we report here on 
observations of the basic states of such a system, as well as on the behaviour of the 
spatiotemporal defects to which it is susceptible. 

Experimental systems displaying complex spatiotemporal behaviour in two and 
three dimensions abound (Hohenberg & Cross 1987). One of the best known of these 
model systems is Rayleigh-BQnard convection, in which a thin, horizontal layer of 
a pure fluid is heated from below. In the last few years, convection in binary fluids 
has also attracted a great deal of interest, because the first instability of the 
conductive state in this system can be oscillatory (Hurle & Jakeman 1971 ; Platten 
& Chavepeyer 1973; Caldwell 1974; Platten & Legros 1984), leading to the existence 
near onset of dynamical states which have a simple spatial structure (Kolodner et al. 
1986; Surko & Kolodner 1987). In the parameter range explored in the present paper, 
this instability triggers a strongly hysteretic transition to a nonlinear state of 
travelling-wave convection, and complex spatiotemporal behaviour is exhibited in 
this nonlinear regime (Walden et al. 1985; Kolodner et al. 1987a; Steinberg, Moses & 
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Fineberg 1987). This complexity is observed close to the onset of convection, and so 
one of the attractions of this system is that this behaviour occurs in a regime which 
may be theoretically accessible (Brand, Hohenberg & Steinberg 1984; Brand & 
Steinberg 1984). However, it has not been possible to avoid complicated three- 
dimensional behaviour in experiments using large-aspect-ratio rectangular cells 
(Walden et al. 1985; Steinberg et al. 1987; Kolodner et al. 1987a), possibly because 
uniform nonlinear waves in this system may be unstable to the transverse 
Benjamin-Feir instability (Bretherton & Spiegel 1983 ; Brand, Lomdahl & Newel1 
1986). Thus, experiments on convection in wide rectangular cells have not been 
useful for testing the predictions of one-dimensional models which produce complex 
behaviour. 

One obvious method to suppress higher-dimensional behaviour in convection in 
rectangular containers is to  use narrow convection cells. In such a geometry, it is 
reasonable to expcct that the strongly nonlinear states will consist of straight rolls 
which propagate parallel to the long side of the cell. However, it is by now well 
known that propagating rolls can reflect from the short walls of the cell, and i t  is not 
understood what consequences these reflections ~ not to mention more subtle 
possible effects of the endwalls-might have for the dynamics of complicated 
nonlinear states. Therefore, we have chosen to conduct experiments in a large-aspect- 
ratio annular container. In this geometry, the convective pattern is one-dimensional. 
The rolls are radial, with no transverse structure, and they travel azimuthally. There 
are no endwalls in the azimuthal direction, and so there are no endwall reflections. 
It is possible to make a convection cell with mean circumference of greater than 100 
times the cell height. The convection pattern in an annular cell satisfies periodic 
boundary conditions, a case which is often considered in numerical simulations of 
model equations mentioned previously. 

In these experiments, we observe a variety of steady and time-dependent 
behaviour. This system supports at least three distinct dynamical states in addition 
to the conductive state : neutrally stable, transient, linear travelling waves exactly 
at the onset of convection ; slow ‘overturning’ convection which is triggered 
hysteretically by the linear TW instability ; and a state of fast travelling rolls which 
can coexist stably with the conductive state in isolated angular regions of the cell. 
These states can be produced separately. In addition, we find that the competition 
between these states can lead to interesting dynamical behaviour, including 
complicated transients and spatiotemporal defects. The evolution of the flows 
produced can often be described in terms of the stability and propagation of the 
fronts which separate different dynamical states. We have found in general that this 
system exhibits a rich variety of dynamical behaviour which may be expected to 
shed considerable light on the nature of nonlinear TW convection in one dimension. 

The remainder of this paper is organized as follows. We begin with a description 
of the physics of travelling-wave convection in binary fluid mixtures, followed by a 
description of the experimental apparatus. We next discuss experimental results 
concerning states of uniform, slow convective rolls, stable confined states of fast 
travelling rolls, transient states, and then spatiotemporal defects. Finally, the 
significance of the experimental results is considered in the discussion section. 

2. Travelling-wave convection in binary fluid mixtures 
The state of a thin, horizontal layer of a binary fluid mixture which is heated from 

below can be described by four parameters (Hurle & Jakeman 1971; Platten &, 
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Legros 1984): the Rayleigh number R which is proportional to the applied vertical 
temperature difference; the Prandtl number P = V / K  ( u  is the kinematic viscosity, 
and K is the thermal diffusivity) ; the Lewis number L = D / K  (D is the mass-diffusion 
coefficient) ; and the separation ratio $, which is defined as 

@=--- +lac c(1-c)S, .  
aP/aT 

Here, S ,  is the Soret coefficient (Kolodner, Williams & Moe 1988~) .  The quantity I) 

parametrizes the extent to which Soret-driven concentration diffusion changes the 
net vertical density gradient. 

For @ 5 -L2 and L < 1, the conductive state loses stability to oscillations when 
the Rayleigh number is increased above a certain threshold value denoted rco. (In 
this paper, all Rayleigh numbers are normalized to the threshold R, = 1707.8 for the 
onset of convection in a pure fluid with the same thermal properties as the mixture.) 
The threshold rco and the linear oscillation frequency w, are now very well 
understood, both theoretically (Linz & Liicke 1987 ; Zielinska & Brand 1987 ; Cross 
& Kim 1988; Knobloch & Moore 1988) and experimentally (Kolodner et al. 1986, 
1987b, 19888; Surko & Kolodner 1987). 

The oscillatory instability is caused by the competition between two diffusion 
processes - those of heat and of mass -which act on much different timescales when 
L < 1,  The physical nature of this instability is easy to appreciate if one considers the 
behaviour of a fluid element which is displaced vertically in an otherwise motionless 
fluid a t  a Rayleigh number near threshold. In this situation, a vertical concentration 
gradient, We, is established by the Soret effect, and the net density gradient, which 
is proportional to @, is such that the fluid layer is stable against steady convection 
in the form of rolls. In  the case of small Lewis number, when a fluid element is 
displaced vertically, it can come to thermal equilibrium with its new surroundings, 
but its concentration cannot change on the timescale of typical fluid motions. Thus, 
a displaced fluid element will retain a difference in concentration with its new 
surroundings and will therefore feel a restoring force due to the resulting density 
difference. This restoring force, which is proportional to @, results in oscillations a t  
a frequency which is proportional to [@.I: for small I@l. 

The linear oscillations due to the first instability of the conductive state take the 
form of travelling waves (Kolodner et al. 1986; Surko & Kolodner 1987). In  a 
rectangular convection cell, the wavefronts align parallel to the short side of the cell, 
propagate parallel to the long side, and reflect from the short endwalls. The travelling 
waves exhibit a spatial growth rate which depends linearly on the distance above 
onset, 6 = (r-rco)/rco. We observe that these linear waves do not exhibit nonlinear 
saturation at  small amplitudes for the range of parameters explored in this paper. 
Rather, their amplitude can be made neutrally stable only by setting the Rayleigh 
number just enough above onset that the linear growth in space just balances the loss 
upon reflection from the walls (Cross 1986). In this way, the linear oscillatory 
transients can be observed for arbitrarily long periods. 

If the Rayleigh number is increased above the point of neutral stability, the linear 
waves will grow and evolve into a nonlinear state. For the values of $ considered 
here, this transition is strongly hysteretic, and the resulting nonlinear state, which 
also consists of travelling waves, is observed to have a much lower oscillation 
frequency than the linear state seen at onset. Both of these features result from the 
strong effect of the flow on the background vertical concentration gradient Vc. When 
the amplitude of the convection becomes large, the fluid is mixed by the flow, and 
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Vc is reduced from the diffusive profile produced by the Soret effect in the conductive 
state found below onset. Since Vc is the 'spring' which provides the restoring force 
for the linear oscillations, their frequency drops. Once the travelling waves evolve 
into a fully nonlinear state, advection by the flow is too strong to be balanced by 
diffusion, in the regime where L 4 1 .  This results in the formation of thin boundary 
layers a t  the horizontal surfaces of the cell. In  this state, the Rayleigh number must 
be substantially reduced before the advection in the flow is weak enough to be 
balanced again by diffusion. This is the cause of the strong hysteresis. 

A number of experimental observations have been made of this strongly nonlinear 
state, which we have called 'overturning' convection (Walden et al. 1985; Steinberg 
et al. 1987; Kolodner et al. 1987a). A characteristic feature seen in wide rectangular 
cells is a pronounced three-dimensional character. It is possible that this is due to a 
transverse breakup of the travelling waves caused by the Benjamin-Feir instability 
(Bretherton & Spiegel 1983; Brand et al. 1986). The difficulties inherent in 
characterizing and understanding these three-dimensional flows have been a major 
factor in our decision to investigate travelling-wave convection in a one-dimensional 
geometry. 

One-dimensional patterns of nonlinear travelling-wave convection in a rectangular 
geometry have already shown promise of representing an interesting dynamical 
system. Ahlers, Cannell & Heinrichs (1987), Heinrichs, Ahlers & Cannell (1987), and 
Moses, Fineberg & Steinberg (1987) have reported the observation of steady 
'confined states ', in which waves travel towards one of the short walls of the cell and 
fill only the half of the cell that is bounded by that wall. Cross (1986) has pointed out 
that such observations can be caused by the convective nature of the instability to 
travelling waves. By this it is meant that, because the propagation of the waves is 
in some sense fast compared to the linear growth rate, a local disturbance is carried 
away by the flow faster than it can grow up locally. This leads to patterns in which 
the amplitude of convection increases from a small value, measured on one side of the 
cell, to a saturated nonlinear value, measured on the other side of the cell, as one 
moves in the direction of propagation of the waves. These states have also been 
observed to exhibit complicated dynamical behaviour as well (Fineberg, Moses & 
Steinberg 1988 ; Kolodner & Surko 1988 ; Kolodner, Surko & Williams 1989 ; 
Steinberg et al. 1989). However, Cross' work suggests that endwall reflections are 
important in producing states exhibiting spatial confinement (Cross 1986, 1988). 
Thus, it is likely that these observations do not represent the behaviour of travelling- 
wave convection in an unbounded, one-dimensional geometry. To model an 
unbounded system, we have therefore been led to conduct the present experiments 
in an annular convection cell. 

3. Experimental apparatus and procedure 
Figure 1 is a sketch of the apparatus, which we refer to as Cell A, used for most of 

these experiments. The horizontal boundaries of the convection cell are a rhodium- 
plated copper mirror on the bottom and a sapphire window on the top. The mirror 
is heated from below, and the window is cooled from above by circulating water 
whose temperature is fixed a t  24.2 "C. The temperature difference, AT, applied across 
the cell is measured by thermistors in thermal contact with the upper and lower 
plates. AT is typically 6 "C to 8 "C and is regulated with a stability of f 5  x "C. 
A quartz window above the cooling-water channel allows visualization of the 
convective flow from above by shadowgraphy. The vertical walls of the cell are 
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Brass 

FIGURE I .  Section of the experimental cell referred to as Cell A. The fluid is contained between two 
concentric O-rings which are sandwiched between a mirror-polished copper bottom plate and a 
sapphire top plate. Glass spacers just outside the outer O-ring accurately set the gap between the 
upper and lower plates. The copper mirror is supported by a thick brass plate, to the underside of 
which is glued an electrical heater. Cooling water circulates above the sapphire top plate. This 
water is injected into the lower channel of the support structure, sprays out onto the top surface 
of the sapphire, and is removed from above into the upper channel of the support structure. This 
assembly is surrounded by low-density polyurethane foam for thermal isolation. Not shown is the 
magnetic stirring bar which is spun in the cooling water above the sapphire plate in some of the 
experimental runs. 

defined by two ethylenepropylene O-rings which are seated in concentric circular 
grooves in the bottom plate of the cell. The height of the cell is set a t  d = 0.241 em 
by four polished glass spacer tablets which are clamped between the upper and lower 
plates outside the outer O-ring. The inner and outer diameters of the fluid space 
between the O-rings are 7.68 em and 8.47 em, respectively; thus, the radial aspect 
ratio of the cell, given by the ratio of the radial width divided by the cell height, is 

= 1.63, and the circumferential aspect ratio (mean circumference divided by 
height) is 5 = 105.3. 

I n  some of our experiments, we wished to study the effect of a lateral endwall on 
the flow in the cell. This was done by placing a small piece of O-ring material between 
the inner and outer O-rings at  one location in the cell before clamping i t  together. The 
wall filled about 5" of the circumference of the cell. While the wall tended to butt 
against the inner and outer O-rings and thus to present a severe restriction against 
flow in the azimuthal direction, no particular attempt was made to make the wall 
leak- tight. 

I n  several of the experiments reported in this paper, it has been of the utmost 
importance to  ensure that the cell exhibits the best possible azimuthal homogeneity. 
This is to  avoid the existence of places in the cell where local thermal or geometric 
imperfections can nucleate convection or pin travelling convective rolls. I n  order to  
fabricate a cell with uniform height, the apparatus was adjusted in an interferometer 
during assembly. In  some runs, the spatial uniformity of the cell height was better 
than k0.05 %. To ensure uniform cooling of the upper plate of the cell, the cooling 
water was injected tangentially a t  the edge of the sapphire plate and caused to 
circulate azimuthally. I n  some runs, this circulation was enhanced by spinning a 
magnetic stirring bar in the centre of the flow channel, driven by a magnet which 
rotates underneath the lower plate of the cell. I n  order to eliminate disturbances of 
the flow caused by filling holes in the walls of the cell, fluid was injected into the cell 
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through hypodermic needles which were pinched between the O-rings and the sapphire 
plate before the final assembly of the cell. After filling, these needles were withdrawn, 
leaving no imperfections to affect the flow. 

As noted below, it appears that the onset of oscillatory convection is suppressed 
by an amount which depends strongly on the radial aspect ratio r, of the cell. The 
O-ring walls of Cell A, while seated in concentric grooves, could not always be 
clamped down perfectly concentrically every time the cell was dismounted and 
reassernblcd. In angular regions where the cell width is narrower, the local Rayleigh 
numbcr is effectively higher because of the dependence of the instability threshold rco 
on 4. Thus. some of the experimental behaviour seen in uniform states of travelling- 
wave convection, observed at  the end of the life of the apparatus, is attributable to 
non-uniformities in the cell, and these results are not discussed extensively in this 
paper. To assess and control such effects, the inner O-ring was replaced in some runs 
with a solid plastic. disc with a vertical edge, and additional experiments were carried 
out in a second cell, referred to as Cell B, whose vertical boundaries were formed hy 
accurately concentric plastic rings. The aspect ratios of Cell B are 1 : 1.28 : 66.2, with 
d = 0.313 em. 

One final possible cause of azimuthal asymmetry is the presence of large-scale 
lateral concentration gradients due to mass transport by travelling convective rolls 
(Moses & Steinberg 1988). Compositional differences at different locations in the cell 
result in different values of the fluid parameters and, hence, in different local values 
of rco. Thus, in the presence of such a lateral concentration gradient, even if the 
vertical temperature difference is applied uniformly, the fluid in different regions of 
the cell behaves as if it  were a t  different Rayleigh numbers with respect to onset. 
Such lateral concentration gradients are much more difficult to remove than to 
produce, since the lateral concentration diffusion time for this cell is several months. 
In  order to avoid these problems, we typically stir the fluid overnight or for several 
days before each new run by applying a large vertical temperature difference across 
the cell and allowing a pattern of steady convective rolls to  uniformly fill the cell. In  
this state, convection enhances the mass diffusion by a factor of about 25 (Solomon 
& Gollub 1988), leading to a homogenization of the fluid in a more reasonable length 
of time. Moses & Steinberg (1986) have reported the observation of large-scale 
composition gradients produced by mass transport in the travelling-wavc state, as 
well as their removal by this technique. No evidence has been seen in the present 
experiments of inhomogeneities caused by lateral composition gradients. 

The principal diagnostic technique in these experiments was flow visualization 
from above by shadowgraphy. The afocal optical system follows the design of 
Croquette (1989) and is illuminated by a 6-W white light bulb. The image produced 
by this system is divided by a bcamsplitter. One channel is viewed by a 35-mm 
camera for photography of the flow patterns or by a video camera for monitoring and 
recording on time-lapse video tape. The other channel is viewed by an E G & G  
Reticon model CC130 self-scanned annular photodiode array under the control of an 
AT & T PC 6300 computer. The annular camera has 720 elements and produces a 
one-dimensional plot of the optical intensity versus azimuthal position in the cell. It 
is often useful to reduce this data by recording only the positions of the peaks in this 
plot, which correspond to the downflow roll boundaries in the flow pattern a t  the 
instant the image was acquired. By representing these peaks as points arrayed as a 
function of position along a horizontal line, and by plotting thc data from successive 
instants on lines which arc displaced vertically, we can produce a space-time 
representation of the flow pattern (see figures 3, 6, and 9-15 below). The annular 
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photodiode array can also be moved along the optical axis into a region of very weak 
contrast, in which the amplitude of the optical signal is proportional to the 
focalization distance. I n  this regime, a linear measurement of the convection 
amplitude can be made. In the optical system of Cell B, a photomultiplier has been 
added to record the optical intensity a t  a single spatial point in the flow-visualization 
image. This signal is extremely useful for monitoring and stabilizing the flows 
generated very close to  onset, in the same manner as in our previous experiments on 
linear states in rectangular cells. 

The fluid used in these experiments is an 8 wt-Yo solution of ethyl alcohol in water. 
In Cell A, where most of the experiments in this paper were performed, the mean 
temperature of the fluid varied from 28.3 "C to 28.6 O C ,  depending on the temperature 
difference applied across the cell. For this solution, P = 8.91 f0.03, L = 

0.0084~0.0001, and $ = -0.248+0.006 (Kolodner et al. 1988~).  The vertical 
thermal diffusion time for this fluid is 7, = d 2 / ~  = 45.1 s in Cell A. The fluid 
parameters for experiments in Cell B are similar. 

4. Experimental results 
4.1. Linear waves 

As in rectangular cells, convection in an annulus is triggered by the linear oscillatory 
instability. While our observations of linear travelling waves in an annulus have been 
limited, they are in general accord with the extensive study we have made in 
rectangular cells (Kolodner et al. 1986, 1987b, 19883; Surko & Kolodner 1987). The 
first aspect that  we can measure is the transition Rayleigh number. I n  Cell A, we 
have searched for onset with rather low precision, without recording the wavenumber 
of the roll pattern, and we find rco = 1.504f0.035. In Cell B, care was taken to 
stabilize the linear oscillations and to accurately measure their onset Rayleigh 
number and wavenumber. We measured rco = 1.702f0.012 for a wavenumber 
k = 3.322 for Cell B. These measurements are substantially higher than the values 
calculated for a laterally infinite system (Cross & Kim 1988): rc0 = 1.326+0.005 a t  
the critical wavenumber in Cell A, and rco = 1.354f0.004 a t  the measured 
wavenumber in Cell B. In  a rectangular cell of length q, a small suppression of the 
onset, of order ql, is caused by the loss in wave amplitude upon reflection from the 
sidewalls (Kolodner et al. 1986). In  an annulus, where there is no such loss, even this 
small effect should be absent. The explanation of the discrepancy may be the same 
as in pure fluids. I n  that case, it is well known that the onset of convection is strongly 
suppressed when the lateral dimension of the cell perpendicular to the roll axes is 
very small (Catton 1972 ; Walden et al. 1987). Catton (1972) calculates that the onset 
of convection in a pure fluid in a long, narrow rectangle of width 4 is suppressed by 
a factor 1 + ( l / 2 q 7 5 ) .  Applying this correction to  the theoretical values of rco 
produces values that are higher than the measured ones by factors 1.069 0.025 for 
Cell A and 1.055f0.008 for Cell B. The near equality of these numbers, measured a t  
two different values of 4, suggests that the transverse width has the same 
suppression effect on the oscillatory instability as it does on the steady instability in 
pure fluids. 

In Cell B, several runs have been made with the object of stabilizing and 
characterizing the linear travelling waves. Typically, after the Rayleigh number has 
been increased just above onset, the photomultiplier signal from a single spatial 
point in the image of the flow develops growing oscillations which exhibit slow 
amplitude and frequency modulation. This modulation results from the beating of 
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several linear modes and can be analysed in the same manner as was done in 
rectangular cells (Kolodner et al. 1988b). Because of the sharply wavenumber- 
dependent linear gain, adjacent modes have different growth rates. Thus, with 
suitable adjustment of the Rayleigh number, it is possible to cause one mode to have 
zero growth rate while all the others slowly decay, leaving a unidirectional, single- 
wavenumber linear wave of time-independent amplitude. This flow can then be 
allowed to evolve into a nonlinear state by increasing the Rayleigh number. 
Alternatively, it is possible to abruptly increase the Rayleigh number through the 
linear onset, producing a linear state of many modes which undergoes a quite 
different transition to a nonlinear flow. These transients are discussed below. 

In extensive measurements of linear mode beating in rectangular cells (Kolodner 
et al. 1988b). the frequency splitting between pairs of adjacent resonant modes, as 
well as the differential growth rates, were used to extract the linear, dispersive 
parameters of this system. The annular geometry is potentially very useful for 
making such measurements. One reason for this is that, since an integral number of 
rolls must fill the cell, the wavenumber of the travelling-wave pattern can be 
determined with high accuracy directly from Fourier analysis rather than from 
geometrical measurements, which may be subject to optical distortion. (Because of 
the phase shift on reflection from the endwalls of a rectangular cell, the number of 
wavelengths is not an integer in that geometry. This makes determination of the 
precise wavenumber difficult.) Another reason is that, since the circumferential 
aspect ratio in an annular cell can easily exceed 100, the linear modes are quite 
closely spaced. Thus, in the cells used in this paper, a single run can exhibit beating 
between about ten different modes, allowing their growth rates and frequencies to be 
extracted simultaneously. We have not yet systematically exploited these ad- 
vantages of the annular geometry in the study of linear travelling-wave convection. 

4.2. Uniform states of overturning travelling-wave convection 
When the Rayleigh number is increased above the threshold for the linear instability, 
the flow evolves, via transients which are discussed below, into a state of uniform 
overturning convection. As illustrated in the photograph of figure 2, such states 
consist of an integral number N of convective roll pairs which fill the cell and which 
propagate in a single direction. Figure 3 shows a space-time representation of such 
a flow. The number of roll pairs which ultimately develops is a function of the 
thermal history of the cell. We have been able to produce overturning states with 
N = 48 to  56 roll pairs in Cell A. 

Our goal in this experiment has been to  study spatiotemporal complexity rather 
than to fully characterize the basic steady states of this system. Consequently, we did 
not take particular care to arrange the best geometrical uniformity of the apparatus 
during this series of experiments, Accordingly, the results in this section will be 
presented only briefly. 

The period 7, with which convective rolls travel past a fixed spatial point has been 
measured for several Rayleigh numbers and mean wavenumbers. The group velocity 
is always positive and has the value Clw,/ak, - 0.6 to 1.6 for typical Rayleigh 
numbers. The dependence of 7, on Rayleigh number is shown for N = 52 roll pairs 
(mean wavenumber k, = 3.10) in figure 4. Below r x 1.52, the dependence on 
Rayleigh number is approximately exponential, with a wavenumber-independent 
slope of ~;'i%,/i3r = 18, close to the value ~;la7,/Clr = 23 reported for overturning 
convection in the same Rayleigh-number range in a rectangular cell a t  ~ - -0.1 by 
Moses & Steinberg (1986). At higher Rayleigh numbers, the period increases even 
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FIGURE 2. Shadowgraph image of a state of uniform, overturning travelling-wave convection in 
Cell A, at a reduced Rayleigh number r = l.5Zrc,,. This state consists of 48 roll pairs which travel 
clockwise, passing a stationary point with a period 7, = 807,. 

faster ; the overall shape of 7, versus r is quite similar to that reported by Moses & 
Steinberg (1986).t Measurements above r = 1.54 made with different N show a great 
deal of scatter, despite a general increasing trend. The cause of this is unknown, 
although it should be pointed out that, following a change of Rayleigh number in this 
range, it can take the better part of a day for 7, to settle down to a constant value. 
For Rayleigh numbers larger than some threshold rs 2 1.6, the rolls are stationary. 
It is not known whether T,  diverges continuously at  r ,  or whether the rolls abruptly 
stop moving upon further increase in r ,  although the work of Moses & Steinberg 
(1986) suggests the former possibility. These authors, as well as Walden et al. (1985), 
report that the transition back to travelling rolls upon reduction below r, is 
hysteretic. 

t In  our preliminary report of the results in this paper (Kolodner et a2. 1988a), it was stated that 
the variation of 7, with r was much stronger than in rectangular cells. Re-evaluation of our 
experimental procedure has now made it clear that that statement was based on measurements in 
which insufficient time was allowed for 7, to relax a t  high Rayleigh numbers. 
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FIGURE 3. Space-time representation of a uniform state like the one in figure 2. Lines mark the 
positions of downflow roll boundaries (bright stripes in figure 2). Here, the state consists of 55 roll 
pairs, the Rayleigh number is r = 1.578r,,, and the dimensionless oscillation period is T, = 767,. 
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FIGERE 4. Oscillation period T, versus Rayleigh number r for a uniform state of N = 52 roll pairs 
in Cell A. The two error bars represent the standard deviations of the measurements made at those 
particular Rayleigh numbers. The errors in the rest of the measurements are smaller than the 
symbols. As discussed in the text, measurements made with different numbers of roll pairs at  
Rayleigh numbers above r = 1.54 exhibit scatter which is greater than the error bars. Thus, the 
curve has been drawn to match the trend observed in measurements made at  several other values 
ofN and misses the point at  r = 1.545. Tf the Rayleigh number is reduced below r z 1.4, the system 
makes a transition back to  the conducting state. 

4.3. ConJined states 
If we prepare a uniform state and then reduce the Rayleigh number below a certain 
threshold, then the flow develops a localized conducting region which slowly invades 
the cell. This process is accompanied by the generation of defects and adjustments 
of wavenumber and frequency which are described below. The threshold for this 
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transition depends on the wavenumber of the initial pattern and is found to be about 
r = 1.4 for a pattern of N = 52 roll pairs in Cell A. If the Rayleigh number is not 
increased, this invasion will ultimately lead to a complete transition back to the 
conducting state. During this phase, the flow consists of two different, spatially 
separated dynamical states - one conducting, the other convecting -which are 
separated by sharp boundary regions or fronts. The spatially isolated convecting 
region is bopnded by two fronts, one a trailing edge, from which travelling rolls 
emerge, and'the other a leading edge, towards which the rolls propagate. In a regime 
where the convecting region is shrinking in space in this way, we define the sum of 
the velocities of the fronts to be negative. 

If the Rayleigh number is increased again before the invasion of the conducting 
state is complete, then the fronts will. slow down. There exists a Rayleigh number 
above which, in fact, the fronts will reverse, causing the convecting region to invade 
the cell, producing a uniform state again. There is also an intermediate regime in 
which the front velocities both vanish exactly, producing a stationary confined state. 
A photograph of such a state is shown in figure 5. The space-time plot shown in figure 
6 reveals a number of striking features. First, the front velocities truly vanish. The 
fronts can remain motionless in this state for days. Second, the roll velocity in this 
state is much faster than in the uniform states described in the previous section. The 
oscillation period 7, with which confined rolls pass a stationary spatial point is 
typically 7, = 1.287, in Cell A. This is to be compared with the period 7, = 5.07, to 
7.6," measured in the uniform state a t  the same Rayleigh number, and with the 
linear period, T,, = 0.547,. A third feature of these confined states is that their 
wavenumber is quite high - k, = 3.64 in Cell A. The value of Ic, decreases perceptibly 
at the leading edge and increases at  the trailing edge. The amplitude A ,  of the 
confined states, as measured by the contrast in the optical image, is comparable with 
that in the uniform states discussed above: A ,  x 1.3-4,. 

A different experimental protocol can be used to produce confined states. As 
described below, if we start in the conducting state and increase the Rayleigh 
number abruptly to a value well above the onset rco, a spatially complex linear state 
is produced in which linear waves move in different directions in different parts of 
the cell. As time proceeds, this linear transient gradually simplifies, evolving into a 
slow uniform state. If we decrease the Rayleigh number to an appropriate value 
before this transition is complete, the system can evolve instead to a state in which 
two or more confined regions exist. A photograph of such a state is shown in figure 
7 .  Typically, different runs will produce different numbers of confined regions which 
seem to appear in random locations and to have random propagation directions. 

A striking observation concerning these confined states is that they have 
motionless boundaries in a small but finitc band of Rayleigh numbers. Figure 8 shows 
that the sum of the leading- and trailing-edge velocities is zero in a band of width 
Ar = 0.023 centred at  r = 1.442. Thus, the front velocities do not simply change sign 
at some Rayleigh number. Rather, the fronts are truly locked and can remain so for 
days at  a time, at  any Rayleigh number within the band, even if r is changed to a 
different value within the band. If r is increased (decreased) beyond the limits of the 
band, then the confined convecting regions slowly grow (shrink) and can fill (empty) 
the entire cell. If the Rayleigh number is moved back into the band before the cell 
has been filled with or emptied of rolls, we are left again with a stable confined state, 
and confined regions of any length can apparently be made this way. 

The experiments on locked confined regions were conducted under conditions in 
which we are confident that inhomogeneities play no role. The fact that the period 
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FIGURE 5. Shadowgraph image of a confined state of rolls which travel counterclockwise around 
Cell A with a period of approximately 7, = 1.287,. Note that the roll wavelength is shorter than in 
the uniform state illustrated in figure 2, and that the wavelength a t  the leading edge is slightly 
longer than in the rest of the convecting region. 

in the confined state is 5 to 7.6 times faster than the uniform statc seen a t  the same 
Rayleigh number is a strong indication that this is a different dynamical state 
entirely, as opposed to simply being a uniform state in which the rolls are pinned to 
irregularities in the cell. In  this series of experiments, the spatial location at  which 
the uniform state developed a conducting region upon reduction of the Rayleigh 
number appeared to  change randomly from run to  run, allowing confined states to  
be produced anywhere in the cell. The length of the confined regions appears not to 
be fixed, and the propagation direction of the rolls inside the confined regions seems 
to change randomly from run to run. Finally, uniform states studied around the same 
time as the experiments on the confined states exhibited only very weak non- 
uniformities - 2 to  3% - in their wavenumber profiles. These observations suggest 
that confined regions are not created merely by the presence of some kind of 'weak 
spot ' in the cell. 
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FIGURE 6. Spacetime representation of a confined state like that shown in figure 5. Both edges 
of the confined region are motionless. 

Inhomogeneities in the experimental cell could cause other, more subtle, artifacts, 
including the erroneous observation of a ‘locking band’. If in fact there were only a 
unique Rayleigh number r ,  a t  which the front velocities vanished, rather than a full 
band, then a large-scale spatial variation of the Rayleigh number could allow the 
existence of confined rolls over a band of Rayleigh numbers. In  this case, if the 
Rayleigh number varied from below rl a t  one side of the cell to above rl a t  the other 
side of the cell, then the boundaries of the convecting region would move to the 
spatial locations where the local Rayleigh number equals r1 and stop there. The 
‘confined’ rolls would fill the region of the cell where r > rl ,  and this region would 
grow (shrink) if the applied temperature difference were increased (decreased). 
However, we observe no such behaviour. When the Rayleigh number is changed 
within the band, the locked fronts remain motionless. So it appears that this system 
can exhibit a true band of locked, confined travelling waves coexisting with regions 
of conduction. 

4.3.1. ConJined states in the presence of an endwall 
As mentioned in $0 1 and 5, it is of some importance to understand the connection 

between the isolated confined states observed in this experiment and the confined 
states observed in experiments using rectangular cells (Ahlers et al. 1987 ; Heinrichs 
et al. 1987 ; Moses et al. 1987), where the presence of endwalls allows the existence of 
reflected waves and has a severe impact on the nature of convectively enhanced mass 
transport (Moses & Steinberg 1988). We therefore made some observations of 
confined states with an endwall inserted into the channel which forms our cell. In 
these runs, the confined states could be produced with one front a t  the wall location, 
matching observations in rectangular cells. However, confined states in which both 
the leading and trailing edges were distant from the wall could also be observed. 

4.4. Transients 
In our experiments, a wide variety of transient behaviour is observed. Such 
transients reveal a number of key features of the flow produced in this system. Figure 
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FIGURE 7. Shadowgraph iniage of a state consisting of two confined regions which happen to 
travel in the same direction. 

9 shows the spatiotemporal behaviour observed in Cell A following a sharp jump 
through the onset of convection. Initially, the fluid had been held for many hours in 
a motionless state just below onset (rco = 1.504). Then, at time t = 0, the Rayleigh 
number was increased to r = 1.652. In  the context of our previous studies of linear 
oscillatory convection (Kolodner et al. 1986, 1987b, 19886; Surko & Kolodner 1987), 
this Rayleigh number can be considered far above onset. Because no effort was made 
during this run to stabilize the linear state and allow modes with wavenumber far 
from critical t o  decay, the initial linear flow consists of patches of rolls which move 
in different directions at different spatial locations. At about t = 1000 s, these patches 
become visible. The subsequent evolution consists of two stages. First, in the time 
between t = 1000 s and t = 2OOO s, the fast patches ‘anneal’ and slow down to 
produce a pattern of rolls which in fact are almost motionless a t  t = 2000 s. ( I n  the 
next paragraph, we will describe this annealing phase in greater detail.) Second, thc 
slow rolls organize themselves into a uniform state like the ones discussed above. 
Notice that this uniform state is not the result of the nearly motionless rolls simply 
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FIGURE 8. The sum of the dimensionless velocities of the leading and trailing edges of confined 
regions in Cell A is plotted as a function of Rayleigh number. This total front velocity vanishes over 
a finite hand of width AT = 0.023 centred at r = 1.442. The edges of the band exhibit a slight 
hysteresis which has not been explored. 
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FIGURE 9. Space-time representation of the transient produced in Cell A after the Rayleigh number 
was jumped from below onset to  T = 1.652. After about 1000 s, patches of rolls travelling a t  the 
linear wave speed appear. These anneal into a system of slow rolls which then evolve into a uniform 
state by creating space-time dislocations. 
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FIGURE 10. Transient produced by creating two neighbouring patches of oppositely propagating 
confined rolls just above the upper limit of the locking band. The patches expand towards each 
other and become unstable to slow rolls ; these in turn are unstable to fast rolls, which then produce 
individual patches of confined rolls. 

starting to move in one direction or the other. Rather, rolls in different locations start 
to move in opposite directions, creating a number of ‘space-time dislocations’ (e.g. 
at locations 9Oo-18O0 from times 6000 s to 7400 s), in which roll pairs are created or 
destroyed. These defects, which can be produced in a stable way (see §4.5), allow the 
flow to organize itself into a unidirectional uniform state. At the end of this run, a 
uniform state with N = 51 roll pairs (mean wavenumber k, = 3.043) has evolved. 

In the ‘annealing ’ phase mentioned in the last paragraph, neighbouring patches of 
oppositely propagating linear waves interact to produce slow rolls. We have isolated 
this process by studying the interaction between oppositely propagating patches of 
confined rolls, as shown in figure 10. In $4.3 on confined states, we described the 
protocol by which a number of such regions can be produced. To do this, we interrupt 
a transient like the one shown in figure 9 by decreasing the Rayleigh number to a 
value in the middle of the locking band during the annealing phase. This prevents the 
evolution towards a uniform state and instead causes the flow to organize into a small 
number of spatially separated confined regions. In the run illustrated in figure 10, 
two pairs of confined patches were thus created. Because the Rayleigh number is in 
the locking band, these patches can be stabilized for hours and then allowed to 
interact under controlled conditions. Increasing the Rayleigh number to just above 
the upper limit of the locking band caused the edges of neighbouring confined regions 
to expand towards each other. Focusing on the system of rolls centred a t  location 
270” in figure 10, we see that, when the two trailing edges touch, the fast rolls a t  their 
intersection become unstable to an expanding set of slow rolls (time t = 800 s to 
1000 s in figure 10). This fundamental instability is one mechanism by which the 
annealing in figure 9 produces slow rolls from fast rolls. The other - that is, the 
production of slow rolls a t  the intersection of two leading edges of fast rolls - is 
illustrated in figure 11 and is discussed below. 

In figure 9, slow rolls are produced by these mechanisms throughout the cell, and 
their subsequent evolution produces a uniform state. In figure 10, we started with 
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FIGURE 11. Transient, evolution of two sets of oppositely propagating rolls travelling at the 
confined-state speed and separated by a conducting region (location 160") and a stable sink 
(location 300"). The flow is destabilized as in figure 10 by the disappearance of the conducting 
region and evolves towards a uniform state of slow rolls by shedding lines of space-time 
dislocations in the forms of a slow source and a slow sink which wander through the pattern. 

isolated patches of confined rolls, and the interaction of pairs of confined regions 
initially triggers localized patches of slow rolls. (In the case of figure 10, we refer to 
the rolls between 201" and 320" at time t = 1380 s.) The evolution of such isolated 
regions of slow rolls provides some insight into the nature of the uniform state. The 
front a t  location 200" in figure 10 is a leading-edge interface between slow rolls and 
the conducting state, and it is observed to be stable. However, the trailing-edge front 
produced a t  location 320' a t  time t = 1380 s is unstable. There, fast rolls are 
nucleated. These invade the slow rolls, ultimately replacing them with a single 
confined region of fast rolls. Thus we have found a mechanism that prevents the 
stable existence of confined slow rolls : their trailing edge is unstable to fast rolls. This 
is consistent with the fact that steady slow rolls are only seen in the uniform state. 

Figure 11 illustrates a transient evolution from a system of fast rolls to a uniform 
state which is complementary to that shown in figure 10. In this run, the initial state 
exhibited a sink -that is, a fixed spatial point where roll pairs are annihilated. In the 
present case, this defect, seen at location 300' in figure 11,  could be termed a fast 
sink, since the rolls propagate towards it at the speed of confined states. The source 
of these rolls is a shrinking conduction region a t  location 160". The latter structure 
lost stability to slow rolls a t  time t = 1200 s in much the same way as was seen in 
figure 10. In  parallel with this process, the fast rolls at the sink evolved into slow rolls 
simply by slowing down, producing a line of spacetime dislocations. The resulting 
complex state of slow rolls again evolved into a unidirectional state by shedding 
dislocations, as in figure 9. In this case, the lines of dislocations have the appearance 
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FIGURE 12. Evolution in Cell B of a unidirectional linear state towards a uniform state of slow rolls 
just above the onset of convection. The transient can be described in terms of the behaviour of 
fronts between spatially separated regions of different dynamical states, 

of source and sink defects which wander slowly through the cell. Ultimately, when 
all the rolls are moving in the same direction, these defects simply vanish from the 
pattern, leaving a uniform state. 

The discussion in this section has so far centred on the transient evolution of 
spatially complex states of fast waves. A complementary issue is the fate of a 
carefully prepared, unidirectional state of linear waves after the Rayleigh number is 
increased just above onset. Will such waves evolve towards a uniform state simply 
by slowing down and growing in amplitude, or must this evolution take place in a 
more complex manner ? An answer is provided in figure 12. Here, a unidirectional 
linear state was stabilized at rco = 1.702 for several hours, and then the Rayleigh 
number was increased to r = 1.703. In  comparison with the conditions of figure 9, 
this state is very close to onset. 

While the evolution shown in figure 12 is quite complex, the observations of the 
previous sections allow us to  describe it in somewhat simplified terms. Two general 
features can be noted. First, at any instant in time, the flow consists of different 
spatial regions, in each of which a different dynamical state is present. For example, 
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at time t = 3500 s, the flow has broken up  into four regions: rolls travelling at the 
speed of confined states (from about 270" to 358"), a conducting region (from 
358" to  ll"), linear waves (from 11" to about go") ,  and slow rolls (from about 90" to 
about 270"). Second, the evolution of the transient can be largely described in terms 
of the production of defects and the behaviour of the fronts between the different 
dynamical states. In previous sections, we learned some of the properties of these 
fronts. For example, the trailing edge of the rolls which travel a t  the speed of the 
confined states (seen a t  location 358" a t  time t = 3500 s) is seen to  expand into the 
conducting region as time proceeds. This makes sense in terms of the discussion of 
confined states above. Since the Rayleigh number is well above the locking band, we 
are in the regime where confined rolls invade neighbouring conducting regions. 
Likewise, the leading edge of slow rolls (seen a t  location 90" a t  time t = 5000 s) is 
almost stable ; i t  expands slowly into the conducting region, and the slow rolls break 
up in space-time along this front. This behaviour bears some resemblance to  the 
leading-edge fronts of slow rolls seen in figures 10 and 11.  There, such fronts were 
found to be truly stable at  one Rayleigh number in the locking band. Clearly, these 
fronts have a velocity which depends on Rayleigh number. 

Some of the fronts seen in figure 12 have not yet been discussed. Between times 
t = 3000 and 4500 s, a front separating fast linear waves from slower rolls is seen near 
location 90". Also, after time t = 3000 s, a line of space-time dislocations separates 
confined rolls from slower rolls a t  about location 270". This line of dislocations can 
also be considered as a front and represents a mechanism by which the faster 
rolls can slow down to produce the fully nonlinear rolls in the uniform state. Below, 
we shall see that such a line of space-time dislocations can be produced in isolation. 

The transient in figure 12 exhibits many similarities to  the corresponding 
transition to finite-amplitude convection in a wide rectangular geometry that was 
described by Steinberg et al. (1987) and by Kolodner et al. (1987a).  Kolodner et al. 
( 1 9 8 7 ~ )  observed that the principal event consisted of a 'spatial collapse': the 
evolution from a one-dimensional state of linear travelling waves which filled the cell 
to a complex, three-dimensional state of overturning convection which was confined 
to a small region in the centre of the cell. An analogous 'collapse' is seen between 
time t = 0 and t = 4500 s in figure 12. Subsequently, the flow in the rectangle evolved 
by slowly growing to fill the entire cell with an erratic, three-dimensional flow 
pattern. The same spatial growth is seen in the annulus from t = 4500 s to t = 9000 s 
in figure 12. The final phase seen in both geometries is marked by a slowing down of 
the roll propagation velocity throughout the cell. In the rectangular cell, although 
the resulting flow remained erratic and three-dimensional, this slowing-down phase 
was accompanied by the expulsion of defects from the spatial pattern. The line of 
space-time dislocations seen near location 270" in figure 12 may be the analogue of 
these real-space defects. 

The transient shown in figure 12 demonstrates that, even if the flow begins with 
a well-defined, spatially simple linear state and evolves to a similarly simple 
nonlinear state, the evolution in between is by no means uncomplicated. In  this 
system, with its strongly hysteretic transition to overturning convection, the 
nonlinear state is in fact quite different in character from a simple superposition of 
linear modes, even in a strictly one-dimensional geometry. 

4.5.  Stable spatiotemporal defects 

In  the previous section, i t  was clear that  spatiotemporal defects - i.e. the localized 
annihilation and creation of roll pairs - play an important role in the transient 
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FIGURE 13. Isolated space-time dislocations created near the top of the locking band. 

evolution of the flow in this system. Space-time dislocations appeared to have two 
functionv in such transients. First, as shown in figures 9 and 11,  dislocations are 
formed in a pattern of slow rolls which propagate in different directions in different 
parts of the cell. In this way, the pattern can evolve towards a unidirectional uniform 
state. Second, as seen in figure 12, dislocations are formed between spatial regions of 
copropagating rolls which have different velocities. Dislocations form a mechanism 
by which one dynamical state can spatially evolve into another. 

Space-time dislocations can be produced in isolation from other dynamics. In 
figure 13, an isolated line of dislocations was created when the Rayleigh number was 
reduced to r = 1.452 - i.e. just below the top of the locking band - following a turn- 
on transient. The rolls on the left-hand side of the figure have a slightly longer 
wavelength than those on the right. The coexistence of two sets of rolls with different 
wavelengths is made possible by the repetitive annihilation of roll pairs a t  a spatial 
position which fluctuates on timescales on the order of 57, to 107, but which is stable 
over longer times (i.e. hours). This line of defects may ultimately migrate to the left 
and disappear, but only on a timescale of many hours to days. Such slow migration 
is always observed in the direction of the roll propagation. Spatiotemporal 
dislocations have also recently been observed in nearly one-dimensional travelling- 
wave patterns in a rectangular geometry a t  $ = -0.058 by Steinberg et al. (1989) and 
in travelling-wave convection in wide layers of liquid crystals by Joets & Ribotta 
(1989). 

The oscillation period of the rolls on thc left-hand side of figure 13 is anomalous: 
7 = 1.677,. This is slightly slower than the confined-state period (7c = 1.217, to 
1.287,) and 4-6 times faster than the uniform states seen at the same Rayleigh 
number. The anomalous propagation speed appears to be made possible by the line 
of space-time dislocations. 

The space-time dislocation is a mechanism by which repetitive roll-pair 
annihilations allow fast rolls to evolve in space to  rolls with a slower speed that 
appears to be selected. The inverse - namely, slow rolls which evolve to fast rolls via 
repetitive roll-pair creation - is not seen. This would require the existence of a stable 
trailing-edge front of slow rolls, which we have seen before to be unstable. 

A second class of stable defects comprises space-time grain boundaries. An 
example is the sink of fast rolls observed in figure 11. This defect was destroyed 
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FIGURE 14. Stable sink of slow rolls or ‘space-time grain boundary’ observed just above onset. 

during the disruption of the global pattern by the instability of two intersecting 
trailing edges of fast rolls. However, the sink had been stationary for the previous 
8000 s, and it appears safe to presume that, if the Rayleigh number had been reduced 
to a value within the locking band during that interval, the fast sink would have been 
stable indefinitely. 

Figure 14 illustrates a slow sink which followed a turn-on transient at r = 1.525, 
just above onset. For reasons that we do not understand, the overall spatial extent 
of the rolls in this run shrank slowly during this run, whose duration was 6 h. 
Ultimately, the outer trailing edges became unstable to fast rolls which invaded 
them. However, the sink itself was stable. It is worth noting that the speed of the 
rolls in this state was anomalous: 2.2 to 4.5 times faster than the uniform states 
observed a t  this Rayleigh number. 

While the discussion in this section has centred on defects which are stable in the 
sense that their spatial position is fixed, slowly migrating defects are also important 
in the evolution of the flow patterns we observe. An example was seen in figure 11, 
where, after time t 2 4000 s, the flow exhibited a source and a sink defect which 
wandered slowly through the pattern, allowing the system to find a unidirectional 
state of slow rolls. 

4.6. Defects stabilized by endwalls 

We have seen above that grain boundaries in the form of sinks can be stable in the 
unbounded annular geometry. However, the formation of source defects is a more 
complicated issue in this system. Attempts to create source defects from patches of 
outwardly propagating confined rolls always led to transients like those in figures 10 
and 11, and stable sources were not created spontaneously during any of the 
transients we studied. However, when an endwall was installed in the experimental 
cell, it  became possible to observe a stable slow source defect. An example is shown 
in figure 15. Here, the Rayleigh number was increased from below onset to r = 1.554 
for 50 min to induce a transition from the conducting state and was then set a t  r = 
1.443. The state shown in figure 15 was observed to be stable until the run was 
terminated 40 h later. 
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FIGURE 15. Stable source of' slow rolls produced at r = 1.443 in a cell with a wall. The wall is 
shown as a solid black bar at location 120'. 

5. Discussion 
Travelling- wave ronvection in an annulus is a versatile experimental systcm for 

exploring a wide variety of complex spatiotemporal behaviour in one dimension. In  
this paper, we have described the basic non-equilibrium states observable in this 
system, as well as complicated dynamics due to the interaction between these non- 
equilibrium states. Some of the behaviour seen in these experiments - specifically, 
the linear states and uniform overturning states ~ seem to be analogues of the 
corresponding states studied previously in rectangular cells. Other behaviour, 
namely the defects we observe, has not been encountered explicitly in previous 
experiments. The nature of the fast confined states, by contrast, remains truly 
mystifying. 

The linear oscillatory instability has barely been explored in this geometry. 
Because of the integral quantization of roll number in the linear modes and the large 
number of modes which can grow up under the linear gain curve, this system has 
useful potential in the study of the dispersive properties of linear travelling-wave 
states. Because this system has no endwalls, the suppression of onset appears to be 
due solely to the narrow radial aspect ratio. Calculations of this suppression have 
been performed for the case of steady convection in pure fluids, but not for oscillatory 
convection in binary mixtures. Experimentally, the threshold Rayleigh number for 
the onset of an oscillatory flow can be determined much more precisely than that of 
a steady pattern, because slow drifts in d.e. signal levels do not affect the ability to 
detect the onset of oscillations. Thus, such measurements could constitute a very 
stringent test of our quantitative understanding of this effect. 

The basic nonlinear state produced in this system consists of slow rolls which 
uniformly fill the cell and propagate in a single direction. The annular geometry 
allows these states to be characterized in the absence of reflections from endwalls. 
Experimentally, it has been quite difficult to produce 'uniform' states in which the 
wavenumber is truly uniform in space, principally because these states were studied 
in a cell which had small but noticeable imperfections. Recent progress has been 
made in improving this aspect by perfecting the geometrical homogeneity of the cell. 
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Recently, an analysis of nonlinear convection in a horizontally unbounded fluid 
layer has been performed which, in contrast with previous work, takes into account 
the existence of concentration boundary layers a t  the top and bottom horizontal 
surfaces of the fluid layer (Bensimon, Pumir & Shraiman 1989). The calculation is 
expected to  be quantitatively accurate for < 1 but only qualitatively correct for 
the parameter values of the present experiments. This calculation predicts that 
convection is triggered by a subcritical bifurcation from the conductive state. The 
stable branch of the bifurcation diagram corresponds to a state with thin 
concentration boundary layers and a slow roll-propagation velocity. This is clearly 
our ‘uniform’ state. The calculation predicts the existence of this branch over a 
range in Rayleigh number of 6r N 0.1 for ?,h = -0.25, which is to be compared with 
our observed value of 6r N 0.2. In  the calculation, the roll-propagation velocity is 
found to decrease with increasing Rayleigh number owing to the sharpening of the 
boundary layers. For $ = - 0.25, the dimensionless oscillation frequency decreases 
from a maximum of 2.2, at the lowest Rayleigh number, to zero. This is to  be 
compared with our observed maximum uniform-state oscillation frequency of 
27tr,/r, - 1.4. The calculation also predicts that  the transition from this travelling- 
wave state to steady overturning convection is supercritical. This is a t  odds with 
experimental observations made with rectangular cells (Walden et al. 1985 ; Moses & 
Steinberg 1986), in which steady overturning convection was found to persist 
hysteretically upon reduction of the Rayleigh number below the transition. However, 
in a rectangular geometry, the presence of lateral endwalls could stabilize the 
overturning state against travelling waves, causing this hysteresis. If the calculation 
is correct, the transition should be supercritical in an annular geometry, where there 
are no endwalls. This experiment remains to be done. 

The bifurcation diagram predicted by the calculations of Bensimon et al. (1989) 
also exhibits an unstable branch which is characterized by a fast propagation 
velocity and a vertical concentration profile which is quite close to the linear profile 
produced by the Soret effect in the conducting state. It may be that this branch 
corresponds to  the fast confined state that  we observe, and that some aspect of the 
experiment stabilizes it. A key experimental test of this idea would be to  measure the 
concentration profile in the confined state and compare it with the predictions of the 
calculation. For the moment, we observe that the calculated amplitude of the 
unstable branch is somewhat smaller, with respect to the stable branch, than our 
measured value of A ,  M 1.3A,. 

However, despite this theoretical progress, the true nature of the observed 
confined states remains a puzzle. While the theory predicts the existence of a state 
with a fast roll velocity and a weak concentration boundary layer, i t  does not explain 
why such a state should be confined, or indeed observable a t  all. There may in fact 
be a relationship between the stability and propagation properties of the fronts 
which bound the confined state and the actual stability of this state. It appears 
experimentally that leading edges are stable for slow rolls as well as for fast rolls, and 
possibly for rolls with any speed. Trailing edges, however, are stable only for rolls 
with the velocity of the confined states. Perhaps the key to  understanding these 
states will be found in the stability properties of such fronts. 

Confined states exhibiting a stable trailing-edge front and a high phase velocity 
have been obscrved previously in experiments in rectangular containers (Ahlers et al. 
1987; Heinrichs et al. 1987; Moses et al. 1987). Stable trailing-edge fronts can be 
understood in the context of various forms of the Ginzburg-Landau equation as a 
consequence of the convective nature of the instability to a travelling pattern 
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(Deissler 1985; Cross 1986; Deissler & Brand 1988). However, such weakly nonlinear 
models implicitly assume a state of infinitesimal amplitude, so that this under- 
standing may not explain why these fronts remain stable in a system which 
undergoes a strongly hysteretic transition, such as the one under investigation here. 
Furthermore, the confined states reported here are the first which exhibit stable 
leading-edge fronts in the absence of reflections from a wall. The concept of a 
convective instability does not provide insight into the nature of a leading edge. 

Thual & Fauve (1988) have observed that localized pulse-like structures can be 
stable solutions of a weakly nonlinear dynamical equation which exhibits a 
subcritical Hopf bifurcation. In  this calculation, in which the group velocity is zero, 
a coupling between the phase and amplitude of the oscillating pattern leads to an 
effective nonlinear saturation, producing a structure of a fixed shape and length, 
B. A. Malomed (1988, private communication) has made a similar suggestion. It is 
not clear what relevance such structures have to our observations. Our confined 
states are observed in a strongly hysteretic regime, appear to have an arbitrary 
spatial extent, and are locked in space with respect to the cell, not in the co-moving 
frame of the rolls. The structures predicted by Thual & Fauve are fixed in the frame 
of the rolls. 

Coullet et al. (1987) have suggested that metastable configurations of defects (i.e. 
leading and trailing edges) may be sustained if there is an oscillatory interaction 
between such defects. There is no theoretical proof that this is the case for convection 
in binary fluid mixtures. Their analysis predicts that, the greater the spatial extent 
of a state confined by this mechanism, the less stable it is (e.g. against changes in 
temperature). This does not seem to be a characteristic of the confined states we 
observe. 

Bensimon, Shraiman & Croquette (1988), following the suggestion of Pomeau 
(1986) have proposed that non-adiabatic effects in a system with a weak subcritical 
bifurcation can cause the locking of fronts to the underlying roll pattern, resulting 
in confined states that are stable over a small band of Rayleigh numbers in an 
unbounded, one-dimensional system. It can be demonstrated that such effects can 
stabilize a front between a conductive region and a region of steady rolls. However, 
their work suggests that the stabilization of a front of travelling waves requires the 
existence of a region of standing waves. We have made a preliminary search for such 
waves at the edges of the confined regions in our experiment. Their amplitude 
appears to be less than a few percent of that of the dominant wave component. 

Finally, Y. Pomeau (1988, private communication) has suggested that confined 
states are associated with the production of a mean large-scale azimuthal flow. The 
experiments in which isolated confined states were observed in a cell with an endwall 
tend to discount this suggestion, although the endwalls we used were not completely 
leakproof. In this regard, it will be of some interest to conduct the same experiments 
with a leak-tight endwall, perhaps using the photochromic mass-transport technique 
of Croquette (1989), Croquette et al. (1986), and Moses & Steinberg (1988) as a 
diagnostic for the presence of such large-scale flows. In  the meantime, the first 
question raised by our observation of confined states - namely, their very existence 
and the stability of their leading edges - remains unanswered. 

The notion of the study of the fronts between dynamical states, as opposed to the 
examination of the basic non-equilibrium states of the system without fronts or 
boundaries, becomes important when we consider transients and defects. Indeed, we 
have adopted a language which describes such behaviour mainly in terms of the 
stability and propagation of these fronts. For example, we have noted that leading 
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edges separating travelling rolls from a conducting region appear to be stable at  
every observed propagation speed. Similarly, the front separating slow rolls from fast 
rolls which follow them is either roughly stable on short timescales, as in figure 13, 
or ‘invasive’, as in the transient illustrated in figure 10. This instability of trailing 
edges of slow rolls explains why stable states of confined slow rolls are not seen. Of 
course, this ‘explanation’ merely defers the question; why such trailing edges are 
unstable is not known. 

Another important comment concerning front properties is that they have been 
explored in this paper only for one particular fluid concentration. At different values 
of $, these fronts between different dynamical states may have different velocities 
and stability properties, leading to dynamical behaviour that is qualitatively much 
different from that reported in this paper. 

Establishment of fronts between regions containing different dynamical states is 
a general way in which a system can exhibit complex spatiotemporal behaviour. 
Defects form an important subset of the family of possible fronts. We have isolated 
two kinds of stable defects : dislocations and grain boundaries. Concerning the latter, 
an important question is why sinks of rolls can be stable in an unbounded system 
while sources appear to be stable only in experiments in which a lateral wall was put 
in the cell. Dislocations have been found to be a ubiquitous way for accommodating 
different dynamical states in the same flow. The system of dislocations shown in 
figure 13, for example, allows a region of flow with one wavenumber to evolve 
spatially to another wavenumber. In  figures 9 and 11, dislocations permit a system of 
slow rolls travelling with different velocities and directions a t  different places to 
select a unique propagation velocity. In  general, such mechanisms must play an 
important role in producing turbulence ; that is, complex flows with a wide range of 
wavenumbers. The study of dislocations is also part of the key to an understanding 
of the weaker case of one-dimensional phase turbulence. 

It is a pleasure to acknowledge useful discussions with P. C. Hohenberg, B. 
Shraiman and M. C. Cross. We also thank M. C. Cross for providing us with software 
to calculate properties of the linear oscillatory instability. 
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